-

AD-A193 413 ADA (TRADE NAME) COMPILER YALIDATION SUMMARY REPORT:
YERDIX CORPORATION ¥..(U> INFORMATION SVSTE AND
TECHNOLOGY CENTER W-P' AFB OM ADA VALI. . HRR 8

UNCLASSIFIED AVYF-YSR-60. 8587 F/G 12/%

800 e,

ol b,

Sab vaB.Pu0 0l Pl BB 6,0 00 00 500 1 000 ® 1St ey g
. ety .
- &Y,
=y 't
’1
LA

[

“m 10 & La
= w 32 22
= B s l-

Eow 2o

L
2 fles e

==
B

MICROCOPY RESOLUTION TEST CHAR1
JREAU e <TANDARDS: [963-2

AR e e« v ¥ LA BTN NS Yy T A A RN

fm

Senen

TR S

EEEEEN A * +

AD-A193 413

T wiy 8080 8'g 459 By 70 S'n 89) 4%s 4'p @ 8% gV

AVF Control Number:

Ada® COMPILER
VALIDATION SUMMARY REPORT:
Verdix Corporation
VAda-010-2323, Version 5.41
Sequent Balance
(NS32032 CPU)

Canpletion of On-Site Testing:
11 March 1987

Prepared By:
Ada Validatiom Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

¢

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington, D.C.

\ g pelle release qnd aaley M8
| isribefion o enlimWedyue <Y

ol e <Al "ol “ak vap gy tal vl T RN ER R AN

m FILE Cop; e

AVF-VSR-60.0587 8

87-01-21-VRX e

®pda 19 a registered trademark of the United States Government
(Ada Joint Program Office).

88 4

4

ar
A DAL A T A, T AT RN T AT AT R 2,7 AL AT A" A% A AR ACRE AT ALATAD S N R N A LR

V53

ATl

ot v e A AN S NN AR NN XM RN E I WLV PUETIRUAS

UNCLACSTRTED
SECURITY CLASSIFICATION F [HIS PAGE (When Data Entered)

I AX YA

O U VS RA

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETEING FORM

1. REPORT NUMBER |2. GOVT ACCESSION NO.

3. RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subtitle)

Ada Compiler Validation Summary Report: Verdix
Corp. VAda-010-2323, Version 5.41 Sequent
Balance (NS32032 CPU)

5. TYPE OF REPORT & PERIOD COVERED'
11 March'87 to 11 March'88

6. PERFORMING ORG. REPQRT NUMBER

7. AUTHOR.(S)
Wright-Patterson AFB OH 45433-6503

8. CONTRACT OR GRANT NUMBER(s)

8. PERFORMING ORGANIZATION AND ADORESS

Wright Patterson AFB OH 45433-6503

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Ada Joint Program Office

United States Department of Defense
Washington, DC 20301-3081ASD/SIOL

12. REPORT DATE
11 March 1987

T3, NUMBER OF PAGES
37p.

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)
Wright-Patterson AFB OH 45433-6503

15, SECURITY CLASS (of this report)
UNCLASSIFIED

15a. gEﬁkBaEéFICATION/DOVNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

UNCLASSIFIED

17. DISTRiBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DN fORR 129
0o 1473 eoITION OF 1 NOV 65 IS OBSOLETE

S/N 0102-LF-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

T TANARN]
(N
("'10‘.:'.;

OCUON
‘c!"h!‘.!"u‘

A LY

—
)

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the VAda-010-2323, Version 5.41, using
Version 1.8 of the Ada® Campiler Validation Capability (ACVC). The
VAda-010-2323 1s hosted on a Sequent Balance (NS32032 CPU) operating under
Sequeut DYINIX Operating System, Release 2.1.0. Programs processed by this
compiler may be executed on a Sequent Balance (NS32032 CPU) operating under
3equent DYNIX Operating System, Releasa 2.1,0.

On-site testing was performed 9 March 1987 through 11 March 1987 at Verdix
Corporation Western Operations, Aloha OR, under the direction of the Ada
Validation Facility (AVF), according to Ada Validation Organization (AVO)
polictes and procedures. The AVF identified 2210 of the 2399 tests in ACVC
Version 1.8 to be processed during on-site testing of the compiler. The 19
tests withdrawn at the time of validation testing, as well as the 170
executable tests that make use of floating-point precision exceeding that
supported by the implementation, were not processed. After the 22710 tests
were processed, results for Class A, C, D, and E tests were examined for
correct execution. Campilation 1istings for Class B tests were analyzed
for correct disgnosis of syntax and semantic errors. Campilation and 1link
results of Class L tests were analyzed for correct detection of errors.
There were 8 of the processed tests determined to be inapplicable. The
remalining 2202 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 _3_4 5 6 _7_8_9 _ 10 11 12

Passed 102 252 334 244 161 97 138 261 130 32 218 233 2202
Falled o 0 o o 0 0o o0 O O o0 o0 O 0
Inapplicable 14 73 86 3 0 0 1 1T 0 0 O 0 178
Withdrawn 0 5 5§ 0 0 1 1 2 4 0 1 0 19
TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

®\da 1s a registered trademark of the United States Government
(Ada Joint Program Office).

Ada® Compiler Validation Summary Report:

Compiler Name: VAda-010-2323, Version 5.U41

Host:

Sequent Balance (NS32032 CPU)

under Sequent DYNIX
Operating System,
Release 2.1.0

Target:

Sequent Balance (NS32032 CPU)

under Sequent DYNIX
Operating System,
Release 2.1.0

Testing Completed 11 March 1987 Using ACVC 1.8

This report has been reviewed and is approved.

Ada Validation Facility

Steven P. Wilson

ASD/SCOL

Wright-Patterson AFB OH 45433-6503

—3 C
% / ! :%//l-/(.‘(:; “ ——e———

Kda Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA

Ada %%int Program Office

Virginia L. Castor
Director

Department of Defense
Washington DC

Accession For

NTIS GRA&I g
DTIC TAB
Unannounced O

Justification — o

By.

Distribution/

Availability Codes

Avail and/or
Dist Special

A-L

%
8
3

93
o‘)g,(\

®pda is a registered trademark of the United States Government

(Ada Joint Program Office).

o T e O e N T o A IR R

N e R I N ICA N

NN \‘;\.‘:'\..‘P.\ SN VRN

o
- -
T S

A

<L o'

s
- -
-

Sou
o ol

o x
o

.-'
Ay

{l‘_}& S

"

5

A

I A P A = N SR TP AR N SN NS S g R

RN ToRgT b, Mg g g r dt g Rt 8. et Rt Bt Bt dat 0t .0 0t 4% 4% Sat A% 9.t fat Qo6 g0 0 "X 0

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the VAda-010-2323, Version 5,41, using
Version 1.8 of the Ada® Campller Validation Capability (ACVC). The
VAda-010-2323 43 hosted on a Sequent Balance (NS32032 CPU) operating under
Sequen’ DYNIX Operating System, Release 2.1.0., Programs processed by this
compiler may be executed on a Sequent Balance (NS32032 CPU) operating under
3equent DYNIX Operating System, Release 2,1,0.

On-gite testing was performed 9 March 1987 through 11 March 1987 at Verdix
Corporation Western Operations, Aloha OR, under the direction of the Ada
Validation Facility (AVF), according to Ada Validation Organization (AVO)
policies and procedures. The AVF identified 2210 of the 2399 tests in ACVC
Version 1.8 to be processed during on-site testing of the compiler. The 19
tests withdrawn at the time of validation testing, as well as the 170
executable tests that make use of floating-point precision exceeding that
supported by the implementation, were not processed., After the 2210 tests
were processed, results for Class A, C, D, and E tests were examined for
correct execution. Campilation 1listings for Class B tests were analyzed
for correct diagnosis of syntax and semantic errors. Campilation and 1link
results of Class L tests were analyzed for correct detection of errors.
There were 8 of the processed tests determined to be <inapplicable. The
remaining 2202 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7T _8 9 10 11 12 4

Passed 102 252 334 244 161 97 138 261 130 32 218 233 2202

Falled o 0 0 0 o 0 0 0 O o0 o0 o 0

Inapplicable 4 73 86 3 0 0 1 1 0 0 0 0 178
Withdrawn 0 5 5 0 0 1 1 2 4 0] 1 0 19
TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

®Ada 13 a registered trademark of the United States Govermment
(Ada Joint Program Office).

s

r
‘o

o

Ld
.,

o SR

e

N
[]

e e e @ - -

AN LA I N N R R UL LU A A A L R AN P A U A R AN VIR U

- e an s

o o o - |

- -t -

~ap A - -

DO

TABLE OF CONTENTS

Y UL el oy o .8 3 o 3’ M T V2 VUL LN XXX}

CHAPTER 1 INTRODUCTTON
1.1 PURPOSE OF THTS VALTDATION SUMMARY wk?PORT i-2 X
1.2 USE OF THIS VALTDATION SUMMARY REPORT « o 1=2 !
1.3 REFERENCES > @ L] L] * e @ o o . * & s o . "'3
1.“ DEFINTTTON OF TERMS e e e ® & e o & e ¢ o+ e o+ * . 1-3 "
1-5 ACVC TEST CLASSES . o . . . L3] o 3 . Y . 1‘“
CHAPTEK 2 CONFIGURATION TNFORMATTON '
'
2.' CONFIGURATION TESTED e o ® ® & e 5 e 9 6 s s e & o 2-‘
2-2 IMPLEMENTATTON CH.ARACTERISTICS ® & o s e s e o e 2‘2 f_
{
CHAPTER 3 TEST INFORMATTON ﬁ
§
3.‘! TEST RESULTS ® o o o e o © 5 o 6 * s e * s o s o+ o 3-'l 3
3.2 SUMMARY OF TEST RESULTS BY CLASS . . & « « o & & o 3=1 ']
3.3 SUMMARY OF TEST RESULTS BY CHAPTER . . « . « « « . 3=2 \
3.“ WITHDRAWN TESTS ® & o s 06 s e & 8 e s & e o ¢ s o 3-2 .l
3.5 TNAPPLICABLE TESTS & & « « o o o ¢ o o o o o o o« o 3=2 X
3-6 SPLIT TESTS . " s o e o ¢ o e . . o o s » 3 . o o 3—3 ‘
3.7 ADDITTONAL TESTING INFORMATION . . . o o s s o o 3=3)
3K ,1.1 Prevalidation e & 8 ® ® ® 5 » ® ® ® ® ® s o o e 3-u T
3.’(.2 TeSt Method L) L) 3"“ o
307-3 Test Site e 6 o o e o S ¢ o 6 3 8 e 6 o e o o o 3-“ r
]
APPENDIX A COMPL.TANCE STATEMENT !
¥
APPENDIX B APPENDIX F OF THE Ada STANDARD 5
B.1 TMPLLEMENTATION-DEPENDENT PRAGMAS . . . e« « o o B=2 '
B.i.1 SHARE BODY Pragma . « o « « o« o o o o o o o o o B2)
B.1.2 EXTERNAL NAME Pragma . . « « « « ¢ s ¢ ¢ o « « « B-2
B.1.3 INTERFACE OBJECT Pragma .+ + « ¢ ¢ ¢ o ¢ « o« o o B=2
Bo.‘ou IMPLICIT_CODE Pr‘ag‘na * e e o « o o » e o e . . B-3 b
B.2 TMPLEMENTATION OF PREDEFINED PRAGMAS . « « « « . « B=3 "
B.Z.'l CONTROLLED . .] L) L] [. 8-3
50252 ELABORATE e e o o o . e o o o . . . B"3 :
80203 INLTNE e e ® e & » e o & & 4 e s s e e o s s e+ o B-3
B¢2-u INTERFACE * » * e . . o . e o ¢« e & o ¢ e & B-3 :
B.2.5 LIST L) . . L) ') ') L) 8-3 .
302.6 MEMORY_SIZE 3 B"3 gt
30207 OPTIMIZE e e o & e e e & 2 © ° s & o & e ¢ & o B-u ~F
B.2.8 PACK * o e o . L] . . L] » & » o * e o B-u :
802-9 PAGE . e e e o L] LI . . o B"u ¢
B.Z.'«O PRIORTTY e e ® 8 * e e @ e 5 o & ¢ o & o o s e o B"u I:
Bt2.11 SHARED LI] e & o & o ¢ e & e & o s ° s ° s o = B-u]
B02.12 STORAGE UNIT e @ o e ® ® s & ° o ° e & ¢ 2 o s o B-u '|:
L]
.‘r
\
'l "" ‘,, ,. Yo all ,\N" ‘r "".\'.”,‘.'p-“_'- - I.- ~e f ' - ‘_\"b .‘\.’-’ - 'J'\' . \,&l’\'_\ _"\‘.‘_-,\’ o } f‘f"f\f\f'.\ \"-'

TV P LTS - RUNERTNINE NN AT AR NN AN R TSNS TRIW A F T T LT LTI T TV TEFV T

Page 2

B.2.13 SUPPRESS v ¢« « o o o o o o 2 s s « s o o s ¢ o » B=ld
B.2.14 SYSTEM NAME « « « & e s o s o o o » B=U
B.3 TMPLEMENTATTON-DEPENDENT ATTRTBUTES e s s o o+ » B=5
B.3.1 P'REF . o o o o o &« e o ¢ s o o s e o s s s & B=5
B.4 SPECTFICATION OF PACKAGE SYSTEM . « ¢ ¢+ ¢ « &« « o« B=5
B.5 RESTRICTIONS ON REPRESENTATION CLAUSES B-6
. B.5.1 Pragma PACK .« ¢ ¢« ¢« ¢ ¢ o 4« ¢ o s ¢« o« o « o &+ » B=b
B.5.2 Size Specification . ¢« « « o ¢« o ¢ o s s o » o » B=b
B.5.3 Record Representation Clauses . . . ¢« « « « « «» B-6
B.5.4 Address Clauses . + « + o « s » ¢ o s s o s o o B=7
B.5.5 TnterruptsS &+ o« o ¢ o o o ¢ s ¢ « o o o o o o » &« B=7
B.5.6 Representation Attributes B-7
B.5.7 Machine Code Tnsertions . . . e o« o o o o o B-7
3.6 CONVENTIONS FOR TMPIEMENTATION-GENERATED NAMES . B-8
B.7 TNTERPRETATION OF EXPRESSIONS IN ADDRESS CIAUSES . B-8
B.8 RESTRTCTIONS ON UNCHECKED CONVERSTIONS . « « « . . B-8
B.9 RESTRICTIONS ON UNCHECKED DEALLOCATIONS B-8
B.10 TMPLEMENTATION CHARACTERISTICS OF INPUT-OUTPUT
PACKAGES ¢ « ¢ « o+ « o o o o o ¢ s o ¢« o » s o o » B=8
B.11% IMPLEMENTATION LIMITS .« ¢ « o o o o o ¢« » « o » o B=9
B.11.1 Iine Length . « 4 ¢« ¢« ¢ ¢ ¢« ¢ ¢ o ¢« o« o s &« o« o B=9
B.11.2 Record And Array S1zes . « « ¢« ¢« ¢ &« o ¢« + « «» o« B=9
B.11.3 Default Stack Size For Tasks . « ¢+ ¢« » s« « « « » B=9
B.ti.4 Default Collection Size . . + ¢ ¢ ¢ ¢« ¢ ¢« ¢« « o« B=9
B.11.5 I.imit On Declared Objects ¢+ ¢« &+ ¢« « « « B=9
APPENDIX C TEST PARAMETERS
APPENDIX D WITHDRAWN TESTS
‘H" ", " I~f,.f. o, I.. o™ J‘_‘-’\q' ..- \.I 1. J‘NI‘ a 7 - J" {\f\- N _J'.;-f.; ,; \‘. ,; _‘(’

PRt)

PR

i e e T e

-

-~

e -

X ¥ X X X % N4

D
§
)
)

RO RN,

CHAPTER 1

INTRODUCTTON

: Y

This Validation Summary Report }f¥8ﬂ% describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms wused within It and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implewentations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are glven in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
sulite of standardized tests, the ACVC, as inputs t0 an Ada compiler and
evaluating the results., The purpose of valldating is to ensure conformity
of the compller to the Ada Standard by testing that the compiler properly
implements legal language. constructs and that it identifies and rejects
1llegal language constructs. . The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

§
|

G/ LW Ot o Y ’ Y A iy, T 10 TR T TCY N AT S T B IR ‘5
it .o ,.t. ot " \‘}5‘ \\ L X I .0’0.0.0. ".\ 0 f (g %) ¥) PN M hi l. A é A

L b Tt 6,0 140 e B B0t 0.1 Fat 8.0 7.0 g.F §.0%0 070 4% 00 870 8% &, Yo B¢a §%0 §% g0, A gl ab at - S vl ¢ 2l "a¥ Sut a8 2.8 ¢

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

Tnls VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

« To attempt to ‘dentify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any unsupported language constructs
required by the Ada Standard

+ Vo Jetermine that the implemertation-dependent behavior 3 allowed
by the Ada Standard

Testing of this coupiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted fram
9 March 1987 through 11 March 1987 at Verdix Corporation Western
Operations, Aloha OR.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Cungistent +ith the natlional laws of the originating country, the AVO may
rike full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5§
J.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

. » - [*

. PR

R g
~'

ALY -

»
LY

% Y'Yy YY

KL

» %y B BB
'.‘.’-'(

ey,
a

Questions regarding this report or the validation test results

directed to the AVF listed above or to:

Ada Valldation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

.3 REFERENCES

i. Roference Manual for the Ada Programming Language,
ANSI/MIL-STD-18154, FEB 1983.

INTRODUCTION

should be

2. Ada Validation Organization: Procedures and Guideiines, Ada Joint

Program Office, 1 JAN 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc., DEC 1984,

.4 DEFINITION OF TERMS

ACVC The Ada Campiler Validation Capablility. A set

of programs

that evaluates the conformity of a campiler to the Ada

language specification, ANSI/MIL-STD-1815A.
Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF 4s responsible for conducting compilier validations

according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO 1s responsible for setting procedures for

compiler validations.

Campiler A processor for the Ada language. In the context of this
report, a campiler 1s any 1language processor, including

cross-compilers, translators, and interpreters.

Failed test A test for which the canpiler generates a
demonstrates nonconformity to the Ada Standard.

Host The camputer on which the compiler resides.

1-3

O LW 'J‘(J";.‘ Sl

‘.'.;f\"-.‘\: 'J'_l"n’\;.')

",
.~

Y

L W L

result that

RSN
1‘; A rl' F

YCSAC P LS
L&j.‘ﬁ ';”_;;111";’

TNTRODUCTTON

Tnapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way
other than the one expected by the test.

Passed test A test for which a compiler generates the expected result,
Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to tne Ada Standard. 1In the
context of this report, tiic term 13 used to designate a
single test, which may compr':» one or more files.

A test found t. ve incorrect A ot used to check conformity
to the Ada lan;uage specirication. A test may be {ncorrect
because 1t has an invalid test objective, fails to mee" {ts
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured wusing the ACVC. The ACVC
contains both 1legal and 1llegal Ada programs structured into six test
classes: A, B, C, D, E, and I[.. The first letter of a test name Zdentifies
the class to which it belongs. (Class A, C, D, and E tests are executable,
and speclal program units are used t9 report their results during
execution. Class B tests are expected to produce compilation errors.
Class I. tests are expected to produce link errors.

Class A tests check that legal Ada programs can be Successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada campiler. A
Class A test 1s passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable, Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test 1s detected., A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly cocapiled and
executed. Each (Class C test 13 self-checking and produces a PASSED,
FATLED, or NOT APPLICABILE message indicating the result when it 1is
executed.

Class D tests check the compilation and execution capacities of a compiler.

Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of {dentifiers

-4

I P R S T S Rt S S G R

B NP o T e,

ST Sl

AR RS

P RPLICIAS

Tn-n:num 12 JaS Sal SaV RaS b Gall Bt $.0 3.0 98 S0 0.0 LA Bt A8 Dot) Rt 0t

TNTRODUCTTON

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, 1if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PA3SED or
FATLLED message during execution,

Each Class E test 1is self-checking and produces a NOT APPLICABLE, PASSED,
or FATLED message when 1t 1is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it i3 rejected by the compiler for an
allowable reason.

Class L tests check that Incomplete or 1llegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class I. tests are compiled separately and execution 4is attempted.
A Class L test passes if it 1is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations 1in the main program or any units referenced by the main
program are elaborated.

Two 1library units, the package REPORT and the procedure CHECK FTLE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would .’:icumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
1llegal file name, A 1list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test i1s inapplicable to
the dimplementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, 1s not wused in testing a compiler. The tests
withdrawn at the time of valldation are given in Appendix D.

1-5

OGN P93 AN EN AN NS R T A N s SV A AT T AT Y P WG OR AR AT

T R, v wd s 678 8 2% B%a 89m 472 2% g%a g 1oAY S0 P8 o B K 8 4 ey PR T M N I A O A R A R R T U UNUY Y

CHAPTER 2

CONFTGURATTION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under the
foliowing configuration:

Canpller: VAda-010-2323, Version 5.41

ACVC Version: 1.8

Certificate Expiration Date: 2 April 1988

Host Camputer:

Machine: Sequent Balance (NS32032 CPU)

Operating System: Sequent DYNIX Operating System
Release 2.1.0

Memory Size: 4 megabytes

Target Canputer:

Machine: Sequent Balance (NS3”2032 CPU)

Operating System: Sequent DYNIX Operating System
Release 2.1.0

Memory Size: 4 megabytes

N A WAV YU

-
¥ Jod

-y,

IEBIET o)

'.‘Nr:'::.u: 2’

dﬁéﬂés

Y

.
[

A

BN

o e e

P Ry Ere

£ 8,5 0 2.0 g8 gt B Gt Bl e 8P a0 40t et a0 g% aTia JUR" L0 Ut 00’ 13 pra ats a'h ath g'h ail prs o ! Y,

CONFTGURATION INFORMATTON

2.2 TMPLEMENTATION CHARACTERTSTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implemen*tation. This compiler i1s characterized by the following
interpretations of the Ada Standard:

. Capacities,

The compller correctly processes tests containing loop statements
aested to 65 levels, block statements nested to 65 levels, and
~ecursive procedures separately compiled as subunits nested to 17
levels, It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (&
tests), D56001B, D64OOSE..G (3 tests), and D29002K.)

« Universal integer calculations.

An implementation Is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AOO”A, DHAOO2B, DUAOO4A, and
D4AOO4B.)

« Predefined types.

This implementation supports the additional predefined types
SHORT_TNTEGER, SHORT FLOAT, and TINY INTEGER in the package
STANDARD. (See tests B8600iC and B86001D.)

. Based literals.

An implementation s allowed to reject a based 1literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERTC_ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC_ERROR during execution. (See test
E241014A.)

« Array types.
An 1implementation 4s allowed to raise NUMERTC ERROR or

CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD. TNTEGER'LLAST and/or SYSTEM.MAX_TNT.

2=2

il 4.8 6,0 Dk agll a8 $a8 8y
N

.

Vo o0 2ab oad e Vap GaB Nk B Vo Uad) v h 8 S 0D Ea0 Va0 G Nl R OB B SRR 0 Ol Pk A # 2R 0 8 0 0 4 0 R BUE 5 ah AR a4 ') 0'R e IWYrL .) gt *

CONFTGURATTON INFORMATTON

: A packed BOOLEAN array having a ‘'LENGTH exceeding INTEGER'LAST
} raises NUMERTC_ERROR when the array type is declared. (See test
R C52103X.)

W A packed two-dimensional BOOLEAN array with more than TNTEGER'IAST
b: components raises NUMERIC_ERROR when the array subtype 1is
4 declared. (See test C52°04Y.)

) A null array with one dimension of 1length greater than
INTEGER'LLAST may raise NUMERIC_ERROR or CONSTRAINT ERROR either

5 when declared or assigned. Alternatively, an implemghtation may

q accept the declaration, However, 1lengths must match in array

™ slice assignments. This implementation raises NUMERTC _ERROR when
: the array type is declared. (See test E52103Y.;

In assigning one-dimensional array types, the expression appears

KX to be evaluated in its entirety before CONSTRAINT ERROR is raised

% when checking whether the expression's subtype is compatible with '
% the target's subtype. In assigning two-dimensional array types,
’% the expression does not appear to be evaluated in its entirety

Y. before CONSTRAINT ERROR is raised when checking whether the

L expression's subtype is compatible with the target's subtype.
;q (See test C52013A.)

§

K . Discriminated types. :
kI

During compilation, an implementation is allowed to either accept

o or reject an incomplete type with discriminants that is used in an
[access type definition with a compatible discriminant constraint.
in This Iimplementation accepts such subtype indications. (See test
M « P
Y E381044.) :
s i
. In assigning record types with discriminants, the expression -
3 appears to be evaluated in its entirety before CONSTRAINT ERROR is s
K raised when checking whether the expression's subtype is ¥
» compatible with the target's subtype. (See test C52013A.) ;
b

'.1.

. Aggregates,

Y In the evaluation of a multi-dimensional aggregate, all cholces !
~ appear to be evaluated before checking against the index type.]
X (See tests C43207A and CU3207B.)

3 In the evaluation of an aggregate containing subaggregates, all
: choices are evaluated before being checked for identical bounds.
¢ (See test EU3272B.)

i

J
\
i
!
+
)

Y

\ﬁ All choices are evaluated before CONSTRAINT ERROR is raised if a
\ bound in a nonnull range of a nonnull aggregate does not belong to
v an index subtype. (See test E43211B.)

o

']

'

N

" 2-3

. N . e e A e e W A R o
o Y . " . (A Y L o b N e

!

CONFTGURATION INFORMATTON

Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the
same immediate scope, or it may reject the function declaration.
If it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

. Representation clauses.

The2 Ada Standard does not require an Implementation to support
representation clauses., Tf a representation clause 1is not
supported, then the implementation must reject 1t, While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other 1language features,
This implementation accepts 'STZE and 'STORAGE_STZE for tasks,
'STORAGE_STZE for collections, and 'SMALL clauses. Enumeration
representation clauses, including those that specify noncontiguous
values, appear to be supported. (See tests C55B16A, C87B624A,
C87B62B, C87B62C, and BC1002A.)

. Pragmas.

The pragma INLINE 1is supported for procedures. The pragma INLINE
L3 supported for functions. (See tests CA3004E and CA300uF.)

. TInput/ocutput.

The package SEQUENTTAL_TO can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT IO can be instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests
AE2101C, AE2101H, CE220:D, CE220%E, and CE2401D.)

An existing text file can be opened in OUT FILE mode, can be
created in OUT_FILE mode, and can be created in TN FILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for text I/0 for both reading and writing. (See tests
CE3111A..E (5 tests).)

More than one internal file can be associated with each external
file for sequential T/0 for both reading and writing. (See tests
CE2107A..F (6 tests).)

More than one internal file can be assoclated with each external
file for direct I/0 for both reading and writing. (See tests
CE2707A..F (6 tests).)

e o At b B Vg g Ve Saf o YU SR al Y B Cpt Sul Aul Uat tal Vet cq® et gl gl el SV Y gVa Al gl At 500 4V 4% 0% ' 8'0.8'2.0" 00 00" 800 0" Ul PO TN RO RO PO A R R X *

o

=R

.

CONFTGURATION TNFORMATTON

S e

An external fille associated with more than one internal file can
be deleted. {(See test CE2110B.)

il =

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are deleted .
when they are closed. (See tests CE2108A and CE2108C.) %

. Generics.)

-

Generic subprogram declarations and bodies can be compiled in
separate ccmpilations. (See test CA2009F.)

o\

I)

Generic package declarations and bodies can be compiled n
separate compilations, (See tests CA2009C and BC3205D.)

Kol A
- -

"
-*

AR i

XACKE g 5=

7

LR I

F NN

el b

- -~

.

- -~ .

¢

' -\.v\. o Rt

YWY T U Y Y U WIS T A O XN T CNTY * A lig? * a8 * e ? ._1.4u.. ot L% 9ot . oK A Urr

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
VAda-010-2323 was performed, 19 tests had been withdrawn. The remaining
2380 tests were potentlally applicable to this validation. The AVF
determined that 178 tests were inapplicable to this implementation, and
that the 2202 applicable tests were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L
Passed 69 865 1192 17 13 46 2202
Falled 0o o o 0 o0 0 0
Tnapplicable 0O 2 16 0 0 0 178
Withdrawn 0 7 12 0 o 0 19
TOTAL 69 874 1380 17 13 46 2399
3-1

=

097 §p° 05® §g°

T - -

-
A

B~

LR TR T

- - -

)

B R ot N /0 A A A R NSt S g ST A A S = s N

o b}

D w,

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESUL.T CHAPTER TOTAL
2 3 4 &5 o 7 8 9 10 11 12 14

Passed 102 252 334 244 161 97 138 267 130 32 218 233 2202

7ailed o 0 0o o0 0 0 0O O 0 0 0 O 0

{vv ' ticable i 73 86 3 0 0 1 1 0 0 0 0 178
Withisrawn 0 5 5 0 0 1 i P y 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 372 213 233 2399

3.4 WITHDKAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

- W

C327144 CU14044 B74101B

B33203C B45116A C87BS50A

C340184 C480084 C92005A

C359044 BU9006A CY40ACA
b B37401A B4A0T0C CA3005A..D (U4 tests)
_ BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler 1is not required by the Ada Standard to support. Others may
depend on the result of another test that 1is either inapplicable or
withdrawn. For this validation attempt, 178 tests were inapplicable for
! the reasons indicated:

. C34001E, B5200u4D, BS5B09C, and C55BO7A use I.ONG_INTEGER which is
not supported by this compiler,

. C34007G and C35702B use L.ONG_FLOAT which is not supported by this
compiler,

. CB8600°F redefines package SYSTEM, but TEXT TO is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package TEXT TO i3 dJependent on the package
SYSTEM. -

values

largest values in DURATION'S base type.
this implementation.

. The following 170 tests require

3.6 SPLIT TESTS

ca4i13L..Y
C35705L..X
C35706L..Y
C35707L. .Y
C35708L. .Y
C35302L. .Y
C4s5241iL..Y
Ccus5321L. .Y
c4suzil..Y
cusu24L. .Y
C45527L..2
Cus62il..2

a

TEST INFORMATION

C96005B checks implementations for which the smallest and largest
in type DURATION are different from the smallest and
This is not the case for

floating-point accuracy that
exceeds the maximum of 15 supported by the implementation:

tests)
tests)
tests)
tests)
tests)
tests)
tests)
tests)
tests)
tests)
tests)
tests)

If one or more errors do not appear to have been detected in a Class B test
tecause of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors.

compiled and examined.

These splits are then
The splitting process continues until all errors

are detected by the compiler or until there 1is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed

because of 2ts size is split into a set of smaller subtests that

processed.

Splits were required for 19 Class B tests:

B24204A
B24204B
B24204C
B2A003A
B2A003B
B2A003C
B33301A

B37201A
B38008A
B41202A
B4UOOTA
B64001A
B67001A

3.7 ADDITIONAL TESTING INFORMATION

can be

B67001B
B67001C
B67001D
B91003B
B95001A
B971024

UL AN RN N

TEST INFORMATION

3.7.7 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the VAda-C10-2323 was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and that the compiler exhibited the expected
behavior on all fnapplicable tests.

>+ Test Method

Trsting of the VAda-010-2323 using ACVC Version 1.8 was coanducted on-site
»y 1 validation team from the AVE, The configuration consisted of a
Sequent Balance (N332032 CPU) operating under Sequent DYNTX Operating
System, Release 2.7.0.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The contents of the magnetic tape were loaded onto a VAX-11/750, using the
VMS "(COPY" command, and were transferred to the Sequent Balance using
Ethernet.. After the test files were loaded to disk, the full set of tests
was coc:mmpiled and 1linked on the Sequent Balance, and all executable tests
were run. Results were printed directly from the Sequent Balance disk
system, using a printer contrclled by a Power 6/32, connected to the
Balance by Ethernet.

The compiler was tested wusing command scripts provided by Verdix
Corporation and reviewed by the validation team.

Tests were compiled, linked, and executed (as appropriate) using a single
host computer. Test output, compilation 1listings, and Jjob logs were
captured on magnetic tape and archived at the AVF. The 1listings examined
on-site by the validation team were also archived.

3.7.3 Test Site

The validation team arrived at Verdix Corporation Western Operations, Aloha
OR on 9 March 1987, and departed after testing was completed on 11 March
1987.

\ R T R gt .y . P WL . A
AL L IR IRy, O, U G T A G A N AT R N P A AT NI YT SR MU R LN b

ENERY) " 2%8,0"8 0' ¢ 0*0.0 a8 2000 6" 4 2% 8% 8% a “aba et L2t 2% o' UL P U s Sg aty o Ast 0% 00" 80 8ac Oat S Bad ol b b b W R M WM N

/
4
APPENDIX A
¢ COMPL.TANCEK. STATEMENT
Verdix Corporation has submitted the following
l declaration of conformance concerning the
1 VAda-010-2323.
i
\
)
|
L)
P
b
)
)

Y o L Ly YN M L o P o e o o o € O O T o s En A E\ U 0 LY

P o

=

AL

d IS S e S

o

DECLARATION OF CONFORMANCE

Coggiler Implementor: Verdix Corporation
Ada®Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH
Ada Compiler Validation Capability (ACVC) Version: 1.8

Base Configuration

Base Compiler Name: VAda-010-2323 Version: Version 5.41
Host Architecture ISA: Sequent Balance OS&VER #: Sequent DYNIX,
(NS32032 CPU) Release 2.1.0
Taryet Architecture ISA: Sequent Balance OS&VER #: Sequent DYNTY,
(NS32032 CPU) Release 2.1.0

Implementor's Declaration

I, the undersigned, representing Verdix Corporation, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in
the compiler(s) 1listed in this declaration. I declare that Verdix
Corporation 1s the owner of record of the Ada language compiler(s) listed
above and, as such, 1s responsible for maintaining said compiler(s) in
conformance to ANST/MIL-STD-1815A. All certificates and registrations for
Ada language compiler(s) listed in this declaration shall be made only in
the owner's corporate name.

4"'-f

£

/
’ Date: YL vi
Vepdix Corporation ’ /
Michael Seyfrit
Manager, Ada PTEM

| s

Owner's Declaration

I, the undersigned, representing Verdix Corporation, take full
responsibility for implementation and maintenance of the Ada compiler(s)
listed above, and agree to the public disclosure of the final Validation
Summary Report. I further agree to continue ¢to comply with the Ada
trademark policy, as defined by the Ada Joint Program Office. I declare
that all of the Ada 1language compilers 1listed, and their host/target
performance are in compliance with the Ada Language Standard
ANST/MTL-STD-1815A. I have reviewed the Validation Summary Report for the
compiler(s) and concur with the contents.

/WJQJ/@% Date: 3//0/3,,7

Verdix Corporation’/
Michael Seyfrit
Manager, Ada PTEM

®\da 1s a registered trademark of the United States Government
(Ada Joint Program Office).

."“"‘0"""’“;]"4.'"' 4.8, L I A A YO0 PO XV PO M TR RN . * gl G - X $.22° Bt fa® B Bat 6o Uad (gt beiobet

.
L
L
i
) ~¢
[¥% !
. ‘.I
P,
¥
o
"t
\'-
s'_,
APPENDIX B :f
e
APPENDIX F OF THE Ada STANDARD o
l“\\
'\
The only allowed implementation dependencies correspond to implementation- ‘:
dependent pragmas, to certain machine-dependent conventions as mentioned in ool
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on ,"
representation classes. The implementation-dependent characteristics of) |
the VAda-010-2323, Version 5,41, are described in the following sections 0
which discuss topics in Appendix F of the Ada Language Reference Manual '
(ANSI/MIL-STD-18154). Implementation-specific portions of the package -
STANDARD are also included in this appendix. E:
o
LAy
package STANDARD is 7
..'.r-
o e -.:‘:
S
type INTEGER is range -2_147_483_648 .. 2_147_U483_647; A
type SHORT_INTEGER is range -32_ 768 .. 32 767, e
type TINY_INTEGER is range -128 .. 127; B
-~
type FLOAT is digits 15 -.:
range -1.79769313486231E+308 .. 1.79769313486231E+308; :3'.
type SHORT_FLOAT is digits 6 range -3.4028E+38 .. 3.4028E+38; %
I
type DURATION is delta 6.103515625E-05
range -131072.00000 .. 131071.99993; o
‘ot
..'.'\
l‘(_‘
oe 0 :"‘
end STANDARD; R
]
ot
o
4
)
‘_-')
(A
N
»
heY
]
B-1 -
\I
u"

.
>
L]

o
_Q "_q_‘_n_h _Ai‘..n .A\ \

APPENDIX F OF THE Ada STANDARD

B.? TMPLEMENTATION-DEPENDENT PRAGMAS
B.1. SHARE_BODY Praguma

The SHARE BODY pragma takes the name of a generic instantiation or a
generic unit as the first argument and one of the identifiers TRUE or FALSE
as the second argument. This pragma ‘s only allowed at the place of a
declarative item in a declarative part or package specification, or after a
library unit in a compilation, but before any subsequent compilation unit,

When the first argument is a generic unit, the pragma applies to all
instantlations of that generic. When the first argument is tre name of a
cenerlc instantiation, the pragma applies only to the specifie:
‘ngtanriation, or overloaded instantiations.

It the second argument is TRUE, the compiler will try % share code
Zenerated for a generic instantiation with code for other instintiations of
the same generic. When the second argument is FAISE, each 1instantiation
will get a unique copy of the generated code. The extent to which code is
shared between instantiations depends on this pragma and the xind of
generic formal parameters declared for the generic unit,

B.i1.2 EXTERNAL_NAME Pragma

The EXTERNAL_NAME pragma takes the name of a subprogram or variable defined
in Ada and allows the user to specify a different external name that may be
used to reference the entity from other languages. The pragma %3 allowed
at the place of a declarative item in a package specification and must
apply %2 an object declared earlier in the same package specification.

B.1.3 INTERFACE_OBJECT Pragma

The INTERFACE_OBJECT pragma takes the name of a variable defined in another
language and allows it to be referenced directly in Ada. The pragma will
replace all occurrences of the variable name with an external reference to
the second, 1link argument. The pragma 1s allowed at the place of a
declarative item 1n a package specification and must apply to an object
declared earlier 1in the same package specification. The object must be
declared as a scalar or an access type. The object cannot be any of the
following:

a loop variable,

a constant,

an initialized variable,

an array, or

a record.

~ . , - N A At At et et ey
RN o S A TN St P 2 e P b e S G Y e N NN R

'i'i,' ‘:’

AN

-.' ,

"

rrax

¢

e

¥,

2,

T

.
e

-
»

L4
P

o J>Sva Pn
A
Y %~y

SHNRY

APPENDTX F OF THE Ada STANDARD

B.1.4 IMPLICIT CODE Pragma

Takeza one of the f{dentifiers ON or OFF as the single argument. Tnis pragma
is oniy allowed within a machine c¢ode procedure, It specifies that
impii~ it code generated by the compiler be allowed or disalliowed. A
warning 1s issued if OFF is wused and any impliicit code needs to be
generated. The defauit is ON.

3.0 TMPLEMENTATION OF PREVDEFINED PRAGMAS

B.”2." ©ONTRCII.ED

This pragna is recognized by the impiementation vut has no effect.

-...2 EJ].ABORATE

This pragma {s impiemented as described in Appendix B of the Ada RM.

B.2.3 INLINE

This pragma is implemented as described in Appendix B of the Ada RM.

B.2.4 INTERFACE

This pragma supports caiis to 'C' and FORTRAN functions. The Ada
subprograms can be either functions or procedures. The types of parameters
and the resuit type for functions must be scalar, access, or the predefined
type ADDRESS i1in SYSTEM. An optional third argument overrides the default
iink name. All parameters must have mode IN. Record and array objects can
be passed by reference using the ADDRESS attribute.

B.2.5 LIST

This pragma is impiemented as described in Appendix B of the Ada RM.

B.2.6 MEMORY_SIZE

This pragma 1s recognized by the impliementation. The implementation does
not aliow SYSTEM to be modified by means of pragmas; the SYSTEM package
must be recompiied.

B-3

atd 2t V@ .t V. '8 p U 2 B Q" ¢ 403 v) wal Yad wal ¥ THUS U UY YU “a A% &9 i Wi W LW ™

APPENDIX F OF THE Ada STANDARD

B.2.7 OPTIMIZE

This pragma is recognized by the implementation but has no effect.

B.2.8 PACK
This pragma will cause the compiler to cho%se a nonaligned representation

for composite types. It will not cause objects to be packed at the bit
level,

B.2.9 PAGE

This pragma is implemented as described in Appendix B of the Ada RM.

B.2.10 PRIORITY

This pragma is implemented as described in Appendix B of the Ada RM.

B.2.11 SHARED

This pragma is recognized by the implementation but has no effect.

B.2.i2 STORAGE UNTT
This pragma is recognized by the implementation. The implementation does

not allow SYSTEM to be modified by means of pragmas; the SYSTEM package
must be recompiled.

B.2.i3 SUPPRESS

This pragma 1s 1implemented as described, except that RANGE CHECK and
DIVISTON_CHECK cannot be suppressed.

B.2.14 SYSTEM NAME

This pragma 1s recognized by the implementation. The implementation does
not allow SYSTEM to be modified by means of pragmas; the SYSTEM package
must be recompiled.

NAR PRI AR E ™)

g SEEEe

REANR i

P LA
-..ﬂ.’r"..l Sy x

oo
X T o

] o

s
Lo

v
»

x

',‘-'! apl Vo0 S0 0o PN 0.0 6 g0) 2 S0 PR Sul Sk 0.8 SR YA
)

]
o

APPENDTX F OF THE Ada STANDARD

B.3 TMPLEMENTATTON-DEPENDENT ATTRIBUTES
B.3.17 P'REF
For a prefix that denotes an object, a program unit, a label, or an entry:

This attribute denotes the effective address of the first of the storage
units allocated to P. For a subprogram, package, task unit, or label, it
refers to the address of the machine code associated with the corresponding
ondy or statement. For an entry for which an address clause has been
siven, 1t refers to the corresponding hardware interrupt. The attribute is
of ‘the type OPERAND defined in “he package MACHINE CODE. The attribute is
only allowed within a machine code procedure,

See section F.4.8 for .ore informatior on the use of this attribute.

(For a package, task unit, or entry, the 'REF attribute is not supported.)

by e S K e
- - .

B.4 SPECIFTCATION OF PACKAGE SYSTEM

package SYSTEM is
type NAME is (bal_dynix);
SYSTEM NAME : constant ME := bal_dynix;
STORAGE UNIT : constant 8
: 1

L -

L - S Ly

_ = O3
MEMORY SIZE constant := 16_774_216;

-- System-Dependent Named Numbers

MIN_TNT
MAX_INT
MAX_DIGITS
MAX_MANTISSA
FINE_DELTA
TTCK

constant
constant
constant
constant
constant
constant

-2_147_483_64T - 1;
2_147 48B3 647 ;
153

313

2.0 =% (_14);
0.01;

e ss s s se o
s e 90 oo ¢ oo
o o

-- Other System-Dependent Declarations
subtype PRIORITY is Integer range 0 .. 99;
MAX REC_STZE : Integer := 64 * 1024;
type ADDRESS 1s private;

NO_ADDR ¢ constant ADDRESS;
function PHYSTCAI. ADDRESS
function ADDR GT (A, B
function ADDR_LT A,
function ADDR _GE A,

(

(
function ADDR LE (A,
function ADDR_DIFF (A,

T : Integer) return ADDRESS;
ADDRESS) return Boolean;
ADDRESS) return Boolean;
ADDRESS) return Boolean;
ADDRESS) return Boolean;
ADDRESS) return Tnteger;

19w e am

es ¢¢ es se se

- > - -

B-5

W T W R W AT Sl b a b Sagindadad L N AR R UM

e wwr

T Y v

.'l’g,i.a ['. W

“atd 2% o' R S S TE S Ty g aa gt 04Y 0a' Rad G Uav @0 ot Bab Got Bat 0.0 Gat b R ¢ Ga8 Ra0%.0%.4" A°0 A0 8% 41"

APPENDIX F OF THE Ada STANDARD

Integer) return ADDRESS;

function INCR ADDR (A : ADDRESS; INCR
: Integer) return ADDRESS;

function DECR_ADDR ADDRESS; DECR

—~
=

function ">"
function "<"

(ADDRESS) return Boolean renames ADDR GT;

(
function ">=" (A,

(

(

(

ADDRESS) return Boolean renames ADDR LT;
ADDRESS) return Boolean renames ADDR GE;
ADDRESS) return Boolean renames ADDR_LE;
: ADDRESS) return Tnteger renames ADDR DIFF;
s+ ADDRESS; INCR : Integer) return ADDRESS
renames TNCR_ADDR;
function "-" (A : ADDRESS; DECR : Tnteger) return ADDRESS
renames DECR_ADDR;

function "<="
function "=-"
function "+"

W Wwoww

=

pragma Inline (ADDR GT);

pragma Tnline (ADDR_LT);

pragma Inline (ADDR GE);

pragma Tnline (ADDR LE);

pragma Inline (ADDR DIFF);

pragma Tnline (INCR_ADDR);

pragma Inline (DECR_ADDR);

pragma Inline (PHYSTCAL_ ADDRESS);
private

type ADDRESS is new Integer;

NO_ADDR : constant ADDRESS := 0;

end SYSTEM;

B.5 RESTRICTIONS ON REPRESENTATION CLAUSES
B.5.% Pragma PACK

Bit packing is not supported. Objects and larger components are packed to
the nearest whole STORAGE UNTT.

B.5.2 Size Specification

The size specification T'SMALL 1s not supported except when the
representation specification 1s the same as the value 'SMALL for the base

type.

B.5.3 Record Representation Clauses

Component clauses must be aligned on STORAGE_UNTT boundaries.

o i o

XA

=T

" LRSS

'I |' " f'(l‘v

- ol

ASRSSY T -

]
r ’. . '. - - ~ - - » n
0 TN A s L5 TN RIN T A A D W » '0."0.“- At G R R R R A S S N R N N, Wy

3 Py - [O P - - LT LY LI T - . PR B R ALY SN] R A)
'."'.t'.‘,’-'ﬂ. ""-’.‘l > l.-.' “l'- 0'. 0'- . l‘n L 1Y 0‘\ £y) l.‘.l.o N ' N ‘0. IF*' e, .!.. J‘ . ..' '\0..’ d.""-- v > ‘ {\ < f R \’\’\q. W

PRSP PN TUR AR PO BT RN VWAV VU LA VTR T T R AN A S T R R AR PO R AR AN MR W T LW WO TN T Wy, d

APPENDIX F OF THE Ada STANDARD

B.5.4 Address Clauses

Address clauses are supported for variables and constants.

B.5.5 Interrupts

Interrupt entries are supported for UNTX signals. The Ada FOR clauses
gives the UNTX signal number.

345.6 Representation Attributes

The ADDRESS attribute is not supported for the following entities:
Packages
Tasks

Labels
Entries

B.5.7 Machine Code Insertions
Machine code insertions are supported.
The general definition of the package MACHTNE CODE provides an assembly
language interface for the target machine. It provides the necessary
record type(s) needed in the code statement, an enumeration type of all the
opcode mnemonics, a set of register definitions, and a set of addressing
mode functions.
The general syntax of a machine code statement is as follows:

CODE n'(opcode, operand {, operand});

where n indicates the number of operands in the aggregate.

A special case arises for a variable number of operands. The operands are
listed within a subaggregate. The format is as follows:

CODE_N'(opcode, (operand {, operand}));

For those opcodes that require no operands, named notation must be used
(cf. BRM 4.3(4)).

CODE_0'(OP => opcode);

The opcode must be an enumeration literal (i.e., 1t cannot be an object, an
attribute, or a rename).

An operand can only be an entity defined in MACHINE_CODE or the 'REF

B-7

b 0.0 Sob o Pof taf 9

C T - R e A — . . S S a2

APPENDIX F OF THE Ada STANDARD

attribute,

The arguments to any of the functions defined in MACHINE CODE must be
static expressions, string 1literals, or the functions defined in
MACHINE_CODE. The 'REF attribute may not be used as an argument in any of
these functions.

Tnline expansion of machine code procedures is supported.

B.6 CONVENTIONS FOR TMPLEMENTATTON-GENERATED NAMES

There are no implementation-generated names.

B.7 INTERPRETATTON OF EXPRESSIONS IN ADDRESS CLAUSES

Address clauses are supported for constants and variables, Interrupt
entries are specified with the number of the UNIX signal.

B.8 RESTRICTTONS ON UNCHECKED CONVERSIONS

None.

B.9 RESTRICTIONS ON UNCHECKED DEALLOCATIONS

None.

B.10 TMPLEMENTATION CHARACTERISTICS OF INPUT-OUTPUT PACKAGES

Instantiations of DIRECT IO use the value MAX REC_STZE as the record size
(expressed in STORAGE_UNITS) when the size of ELEMENT TYPE exceeds that
value. For example, for wunconstrained arrays such as String where
ELEMENT_TYPE'STZE is very 1large, MAX REC STZE is used instead.
MAX REC SIZE is defined in SYSTEM and can be changed by a program before
instantiating DIRECT_IO to provide an upper limit on the record size. TIn
any case the maximum size supported is 1024 ® 1024 ® STORAGE_UNIT bits.
DIRECT_TO will raise USE_ERROR if MAX REC_SIZE exceeds this absolute limit,

Instantiations of SEQUENTTAL IO use the value MAX REC STZE as the record
size (expressed in STORAGE_UNTTS) when the size of ELEMENT TYPE exceeds
that value. For example, for unconstrained arrays such as String where
ELEMENT_TYPE'SIZE is very large, MAX REC_STZE i3 used 1instead.
MAX REC _STZE 1s defined in SYSTEM and can be changed by a program before
instantiating SEQUENTTAI _T0 to provide an upper limit on the record size.

L an o e

APPENDTX F OF THE Ada STANDARD

SEQUENTTAI. TO imposes no limit on MAX REC SIZE.

B.i1 TIMPLEMENTATION LIMITS

The following limits are actually enforced by the implementation. Tt 1is
not 1intended to imply that resources up to or even near these limits are
available to every program.

B.i..1 Line lLength

The implementation supports a maximum 1line length of 500 characters
including the end of line character.

B.77.2 Record And Array Sizes

The maximum size of a statically sized array type 1is U4 000 000 *
STORAGE_UNITS. The maximum size of a statically sized record type is
4_000_¢ 000 # STORAGE_UNTTS. A record type or array type declaration that
exceeds these limits will generate a warning message.

B.17.3 Default Stack Size For Tasks

Tn the absence of an explicit STORAGE_STZE length specification, every task
except the main program is allocated a fixed size stack of 10_240
STORAGE_UNITS. This is the value returned by T'STORAGE STZE for a task
type T.

B.11.4 Default Collection Size

In the absence of an explicit STORAGE_STZE length attribute, the default
collection size for an access type is 100_000 STORAGE UNITS. This is the
value returned by T'STORAGE SIZE for an access type T.

B.11.5 Limit On Declared Objects

There is an absolute 1limit of 6 000 000 ®* STORAGE UNITS for objects
declared statically within a compilation unit. If this value 1s exceeded
the compiler will terminate the compilation of the unit with a FATAL. error
message.

B-9

APPENDTX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in 1its file
name., Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test i1is run. The values used for this validation are given

below.
Name and Meaning Value
$BIG_ID1 (1..498 => 'A', 499 => 'i')

Identifier the size of the
maximum input line 1length with
varying last character.

$BIG_ID2 (7..498 => 'A', 499 => '2')
Identifier the size of the
maxinum Iinput line length with
varying last character.
$BIG_ID3 (1..249 => 'A', 250 => '3', 257..499 => 'A')
Tdentifier the size of the
maximum input line 1length with
varying middle character.
$BIG_ID4 (1..249 => 'A', 250 => '4', 251,.499 => 'A")
Identifier the size of the
maximum dinput line length with
varying middle character.
$BIG_INT_LIT {(1..496 => '0', U97..499 => "298")
An integer 1literal of value 298
with enough 1leading zeroes so
that 1t 13 the size of the
maximum line length.
C-1
]
-
o
Py A A L e e S e e PRI P T P T g, F S f-. AN NN AT N RSP L,) ,:- SR T .r‘.-',‘ PRI R AT AT AT ..,l'

TEST PARAMETERS

Name and iMeaning Value
$BTG REAL ILIT (7..493 => '0', 494,,499 => "H9,0E") -
A real 1literal that can be]

either of floating- or fixed-
point type, has value 690.0, and
has enough 1leading zeroces to be
the size of the maximum line
length.

»obANKS (1..479 => ' ")
A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNT_LAST 2_147_483_6u47
A universal integer 1literal
whose value 1s TEXT_TO.COUNT'LAST.

$EXTENDED_ASCTT_CHARS "abedef ghd jklmnopqrstuvwxyz!$%2@[1 {} -
A string 1iteral containing all
the ASCIT characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD_LAST 2 147 483 6u7
A universal integer 1literal
whose value is TEXT_ TO.FIELD'LAST.

$FILE_NAME WITH BAD CHARS "/illegal/file name/2{]$%27102C.DAT"
An 1lTegal” external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FTI.E_NAME_WITH WIL.D_CARD_CHAR "/1llegal/file name/CE2102C*.DAT"
An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$GREATER_THAN DURATION 100_000.0
A universal real value that lies
between DURATTON'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER_THAN DURATION_BASE LAST -10_000_000.0
The universal real value that is
greater than DURATTON'BASE'L.AST,
if such a value exists.

LR e el

RO IO RO R R OO OO O B Suf Al SR AR G g 6l A 4 ‘Ul Ol U

Name and Meaning

’i.:’Q'.'l‘,«““’l...l‘q‘i‘\ t.u’iiq) .“.‘..\U L) Q. ,..\“J Q".. "‘ ™ N

$TLLEGAL_EXTERNAL_FILE NAME1
An illegal external file name.

$ILILEGAL._EXTERNAL FTIL.E _NAME2
An 1llegal external file name
that is different from
$TLLEGAI._EXTERNAL FTLE NAMET,

$INTEGER _FTRST
The universal 1integer literal
expression whose value is
INTEGRR'FIRST.

$INTEGER _L.AST
The universal integer literal
expression whose value is
INTEGER'LAST.

$L.ESS_THAN DURATION
A universal real value that lies
between DURATTON'BASE'FIRST and
DURATION'FIRST 1f any, otherwise
any value in the range of
DURATION.

$1.ESS_THAN_DURATION BASE FIRST
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAX DIGITS
The wuniversal integer 1literal
whose value 1is the maximum
digits supported for
floating-point types.

$MAX_TN LEN
The universal integer 1literal
whose value 1s the maximum
input 1line 1length permitted by
the implementation.

$MAX INT
The universal integer 1literal
whose value 1is SYSTEM.MAX INT.

C-3

TEST PARAMETERS

Value

"/no/such/directory/II.LEGA]. EXTERNAL FILE NAME:"

"/no/such/directory/ILLEGAL._EXTERNAI._FILLE NAME2"

-2 147 483 648

2_147_483 647

-100_000.0

-10_000_000.0

499

2 _147_483_6U7

Dy W v T T S SR I
LU Y -'“n‘,‘v‘. AR 4 5 }‘ n ; RPN IR A

"R 08 ath 2t

=
-

L B

]
o Ao Mg

'l

ol LELS Y

z

P R o]
o)

55

v & a

-_

IR TV WG U O PO PO O O A W SO,V

¢
TEST PARAMETERS
a
o
. Name and Meaning Value
¥
! $NAME TTNY_TINTEGER
A name of a predefined numeric
’,: type other than FLOAT, INTEGER,
A SHORT_FLOAT, SHORT_INTEGER,
3 LONG_FLOAT, or LONG_TNTEGER
" if one exists, otherwise any
’ undefined name.
| $NEG_BASED_INT 164 FFFFFFFD#
W A based integer literal whose
I» highest order nonzero bit
N falls in the sign bit
* position of the representation
for SYSTEM.MAX INT.
N
{
;:' $NON_ASCTT_CHAR_TYPE (NON_NULL)
;: An enumerated type definition
" for a character type whose
¢ literals are the 1identifier
) NON_NULL and all non-ASCIT
o characters with printable
, graphics.
Yy
"
w*
o
1)
;
»
”
{
X
.l
)
L)
‘ C-4

§

L] s
[}

‘f’l’, ORI OO WSt S0l l‘- 0“.0‘- be ' e, l'ol-l.- l’ol . ‘ - , F ‘)‘ ,* "‘ .'(* '\" Y W, Rt !0‘» ‘ol.' " »

Py Y LN RO YOO R AV AR RN DRI W WU WY R W ® T TINI RN TN AN TRE A 1§ %8, " gt Rt "

\J WA NN YRV YV US

§
APPENDIX D
P
g WITHDRAWN TESTS
7‘
Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
5 validation testing for the reasons indicated. A reference of the form
H "AI-ddddd" is to an Ada Commentary.
. C32114A: An unterminated string literal occurs at line 62.
q
¥
Y . B33203C: The reserved word "IS" is misspelled at line u5.
\
\ . C340i8A: The call of function G at line 114 is ambiguous in the
B presence of implicit conversions.
. « C35904A;: The elaboration of subtype declarations SFX3 and SFX4
" may raise NUMERIC_ERROR instead of CONSTRAINT ERROR as expected in
, the test.
»
! . B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.
[}
: . CU4I4O4A: The values of 'LAST and 'LENGTH are incorrect in the 1Iif
! statements from line 74 to the end of the test.
0
! . BU4ST16A: ARRPRIBL? and ARRPRIBLZ are initialized with a value of
the wrong type--PRIBOOL TYPE instead of ARRPRIBOOI._TYPE--at line
43,
. CU4B8008A: The assumption that evaluation of default initial values
A occurs when an exception is raised by an allocator is incorrect
according to AI-00397.
; . BW49006A: Object declarations at lines 41 and 50 are terminated
5 incorrectly with colons, and end case; is missing from line 42.
h
: . BU4AD10C: The object declaration in line 18 follows a subprogram
: body of the same declarative part.
0
[]
)!
I|
D=1
ﬂ",'.‘._ e ". -~ .‘.‘ ...m & .-,, .p\\‘v " .r“'f.-_:.- .- PN .r ? ' ¥ Ly ',:J';.;«'.;._ ‘ S ALY, ' o .. -r.'\.. o T ¢

WITHDRAWN TESTS

. B74707B: The begin at line 9 causes a declarative part to be
treated as a sequence of statements.

. C87B50A: The call of "/=" at line 31 requires a use clause for
package A.

. C92005A: The "/=" for type PACK.BIG_INT at line 40 is not visible
‘. without a use clause for the package PACK,

. COUOACA: The assumption that allocated task TT? will run prior to
) the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

f . CA3005A..D (4 tests): No valid elaboration order exists for these
: tests.

. BC3204C: The body of BC3204C0 is missing.

D-2

’
)

R L A R T L L G R R D G o R T LY, O L NI, N AT

b3

-,

rrrrs

» I %

b
b

RO

T
¢ 1,

K

e
-_R.‘
N
T

N
-
e
NN
O

<
'l
"!

)

-
ALY
o
Y

AN

)
!
N
WY

~h
\
Al
~
o
AU

» L)
N
5

.

AR
~ N
N
Ly
A\RNT S

- .:.-‘--
ot
'\."\-I‘
el

:'-\:\;:
A

